\qquad

1. Determine if each relation is a function (yes or no). If the relation is a function, determine if it is a one-toone function.
a. $\{(-3,9),(-2,8),(-1,7),(0,6),(5,2)\}$

Function? \qquad
One-to-one? \qquad
2. Determine the domain and range of each function:
a. $\{(5,1),(4,4),(9,-3),(3,4),(-2,-2)\}$

Domain: \qquad
Range: \qquad
b.

One-to-one?
b.

Domain: \qquad
Range: \qquad
b.

Find the value of each function:

3. $f(x)=6 x+5$

Find $f(-4)$
\qquad
\qquad _
7. Sketch a graph of the function:
$f(x)=2(x-4)-5$

8. For each sequence, determine if it is an arithmetic sequence. If yes, find the common difference.
a. $13,9,5,9,13 \ldots$
b. $-8,-14,-20,-26,-32 \ldots$
c. $-9,2,13,24,35$
arithmetic? \qquad If yes, common difference $=$ \qquad arithmetic? __ If yes, common difference $=$ \qquad arithmetic? ___ If yes, common difference $=$ \qquad

Find an explicit and recursive formula for each arithmetic sequence:

9. $33,29,25,21, \ldots$

Explicit: $\quad a_{n}=$ \qquad
Recursive: $a_{1}=$ \qquad

$$
a_{n}=
$$

\qquad
11. Given an arithmetic sequence with the Explicit formula $a_{n}=26+(n-1) 7$

Find the recursive formula:
Recursive: $a_{1}=$ \qquad

$$
a_{n}=
$$

13. Given the arithmetic sequence:
$25,22,19,16, \ldots$
Find the explicit formula:
$a_{n}=$ \qquad
Use the formula to find the $31^{\text {st }}$ term $a_{31}=$ \qquad
14. $-29,-21,-13,-5 \ldots$

Explicit: $a_{n}=$
Recursive: $\quad a_{1}=$ \qquad

$$
a_{n}=
$$

\qquad
12. Given an arithmetic sequence with the recursive formula $a_{1}=2$ and $a_{n}=a_{n-1}+9$

Find the explicit formula:
Explicit: $\quad a_{n}=$ \qquad
14. A parking lot charges $\$ 3$ for one hour of parking, $\$ 9$ for two hours, and $\$ 15$ for three hours. Find an explicit formula of the charge for n hours.
$a_{n}=$ \qquad
How much would the parking charge
for 22 hours of parking? \qquad
15. Describe each correlation as positive, negative, or none
a.

b.

c.

\qquad
16. a. Draw an estimated line of best fit on the scatterplot
b. Write an equation in point-slope form for the estimated line of best fit:
17. A bakery shop owner is baking cakes every hour. The number of cakes that she has made after each hour is

Hours (x)	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Cakes (y)	0	3	5	11	12	15	19	24	33

Label axes and draw a scatterplot.
18. a. Draw an estimated line of best fit on the scatterplot in problem 17.
b. Write an equation in point-slope form for the estimated line of best fit:

19. Describe the correlation for each given r value:
a. $\mathrm{r}=-0.5$
b. $\mathrm{r}=0.9$
c. $r=-1$
20. The data in the given table has a trend line of $y=-2 x+15$

x	1	2	3	4
y	16	9	8	11

Fill in the table for the residuals based on the trend line

x	1	2	3	4
Residual				

21. Graph the line: $y=-3 x+5$

22. Find the equation of the line in point-slope form:
23. Solve for $\mathrm{x}: ~|3 x-4|=8$
24. Solve for $\mathrm{x}: \quad \frac{x}{2}-\frac{3}{4}=\frac{5}{8}$

Through the points $(2,3)$ and (4, -6)

Point-slope form: \qquad
25. Solve and graph the solution: $-5 x+8 \leq 28$

